The Nitty Gritty Of Phosphorous Removal In Wastewater Treatment Plants

Written by Imre Toth, Director – Engineer

From 1965 to 1971, there were many observations of high levels of phosphorus removal at municipal activated sludge treatment plants in the USA. Phosphorus removal efficiencies were greater than 80 percent compared to typical removals of 20-25 percent for activated sludge treatment due to phosphorus needs for biomass growth from BOD removal. Levin and Shapiro (1965) presented experimental results on the occurrence of excess phosphorus uptake by biological activity. They further proposed the sidestream process (Phostrip) for biological release of phosphorus from return activated sludge and subsequent chemical precipitation of the soluble phosphorus in the separated liquid stream from the Phostrip process.

Further designs were not presented at that time due to a lack of understanding of the basic mechanisms behind the excess phosphorus uptake. Barnard (1974) was the first to clarify the need for anaerobic contacting between activated sludge and influent wastewater before aerobic degradation is accomplished, and this concept was called enhanced biological phosphorus removal (EBPR).

A number of modifications were proposed on the original EBPR concept, and the selection was depending on influent wastewater characteristics, effluent treatment objectives and a number of economical factors affecting the decisions (Tchobanoglous et al, 2014).

Enhanced biological phosphorus removal became an attractive means for achieving effluent phosphorus (P) limits in municipal wastewater treatment plants and can be achieved with providing anaerobic conditions in the mainstream or in the sidestream recycled activated sludge. The alternative approach for P removal is chemical addition (e.g., ferric, alum), which has several disadvantages that includes increased excess sludge for disposal, dependence on availability of metal salts, increased operational cost, and difficulties for P recovery.

However, EBPR plants often do not achieve consistent and reliable performance. In many cases, additional chemical addition is needed to achieve effluent P limits, and therefore the advantages of EBPR are often lost.

Solids residence time (SRT), anaerobic mass fraction and contact time, nitrate entering to the anaerobic tank via recirculation, and temperature all impact performance. Recent studies concluded that reliable and successful EBPR performance can be attained in plants with a mainstream anaerobic zone provided the anaerobic mass fraction is sufficiently large, often in the range of at least 15% to 25% (Dold, 2019[RK1] ).

As Transcend listens to the feedback and the needs of its customers, alterative EBPR configurations (A2O, 5-stage Bardenpho, UCT) are now available for activated sludge process in Transcend Design Generator. The design logic includes most recent findings to improve design of mainstream EBPR in order to achieve reliable performance.

References

Barnard. J, L. (1975). Biological Nutrient Removal without the Addition of Chemicals,” Water

Res., 9, 5-6, 485–490.

Dold, P., Conidi, D. (2019). Enhanced Biological P Removal: Have we forgotten how to design a bioP plant? Proceedings of the Water Environment Federation, WEFTEC 2019.

Tchobanoglous. G., H. D. Stensel., F. L. Bunon (2014). Wastewater Engineering, Treatment and Reuse, 5th ed., Metclaf & Eddy, Inc., McGraw-Hill, New York.

Levin. G. V., J. Sharpiro. (1965) Metabolic Uptake of Phosphorus by Wastewater Organisms, J. WPCF, 37.6. 800-821.

Clients

Technology Providers & OEMs Technology Providers & OEMs

TDG rapidly generates accurate budgetary proposals to help suppliers bid more, win more, and sell more.

Asset Owners and Utilities Asset Owners and Utilities

TDG streamlines the capital planning and conceptual design processes to accelerate project timelines and deliver better outcomes.

EPCs, AECs, and Consultants EPCs, AECs, and Consultants

TDG enables engineering firms to deliver more value to their clients & increase competitiveness.

Individuals Individuals

TDG works for individual engineers who want to grow their business and reduce their non-billable time.

Academic Academic

Transcend supports students and professors around the world to incorporate TDG into their curriculum.

Resources

Articles Articles

Read posts written by Transcend team members sharing their points of view on the company mission, vision, and products.

Webinars Webinars

Watch on-demand webinars like Transcend’s popular ‘How To’ series.

E-books E-books

Learn about Transcend software with short informational e-books.

Case studies Case studies

Understand how Transcend’s customers are utilizing TDG to bring more value to their customers and grow their businesses.

FAQ FAQ

View a list of the questions we are most frequently asked about our company and our software

Transcend tools Transcend tools

Access a number of tools Transcend has developed to help engineers and industry professionals take back their time.

Industries

Water and Wastewater Water and Wastewater

TDG creates unique, optimized designs of water & wastewater treatment facilities by automatically combining decisions and calculations from each engineering field.

Power Power

TDG creates unique, optimized designs of T&D assets by automatically combining decisions and calculations from each engineering discipline.